Ipseity
An open-source platform for studying sequential decision problems in multiagent systems

Fabrice LAURI

IRTES-SeT

2014, 12th May
JFPDA, Liège, Belgique
Outline

1. Introduction and motivations
2. Objectives
3. Available Elements in Ipseity 1.2.0
4. Demo
5. Conclusion and Future Works
As pointed out by [Kovacs, 2011], solving sequential decision problems has empirical aspects which involves:

- writing codes,
- conducting experiments, and
- comparing results obtained from alternative approaches.

There are a wide range of environments, agent architectures, decision-making algorithms and performance measures.
Introduction: range of environments

Multi-agent environments are defined according to many features:

- assumptions on the state/action/time spaces
- deterministic or stochastic state transitions
- static or dynamic decision-making processes
- populated by independent learner agents, cooperative agents or competitive agents...
Introduction: range of decision-making techniques

RL algorithms have many dimensions [Sutton, 1998; Busoniu, 2010].

The decision-making process of learning agents may:

- be based on Value-Iteration, Policy Iteration or Policy Search
- be model-based or model-free
- be on-policy or off-policy
- be offline or online
- use a wide range action selection method
- use a wide range of function approximators

But there are also alternative approaches coming from other fields...
Besides, experiments may generate multiple statistics, such as:

- the agents’ interactions over time,
- the discounted return per agent over time,
- the number of steps taken by some agent to reach a goal,
- the Q-function.
Motivations

- There are currently no fully-featured experimental platforms, such as WEKA for Supervised Learning, dedicated to Reinforcement Learning.
- "Science is founded on replicability. Having access to the source code used by others is invaluable and makes for better science.", [Kovacs, 2011]
- Application of RL is still more an art than a science...
Objectives

- *Ipseity* has been especially designed to facilitate the synthesis and the validation of Cognitive Systems within Multi-Agent Systems.

- Cognitive Systems embed a set of Artificial Intelligence decision-making techniques that may be executed alternatively or concurrently, in parallel or sequentially.

- *Ipseity* is targeted at a broad range of users interested in Artificial Intelligence in general, including industrial practitioners, as well as machine learning researchers, students and teachers.
Available Elements

Available environments:
- Single-Agent: Acrobot, Cartpole, DoubleIntegrator, InvertedPendulum, MountainCar, RasendeRoboter, Rubik’s Cube
- Multi-Agent: SmartGrid, Delirium2*

Available Learning Techniques:
- Online model-free: Q-Learning(\(\lambda\)), Sarsa(\(\lambda\))
- Offline model-free: RCAL [Piot, 2014]

Available Action Selection Techniques:
- \(\epsilon\)-Greedy
- Softmax
Available Elements

Available Q-Memory:

- Static (preallocated) Lookup Table (for finite state-action space whose size is known)
- Dynamic Lookup Table (for finite state space whose size is unknown, but “manageable”)
- Linear Function Approximator of the Q-function:
 $$\tilde{Q}(s, a) = \theta^T \phi(s, a)$$

Feature extraction methods:

- Cerebellar Model Articulation Controller (CMAC)
- Customized feature vectors
Available Elements

Controllers for the environments:

- Delirium2 (*SWI-Prolog*)
- RasendeRoboter (*SWI-Prolog*)
Demo...
Conclusion

- *Ipseity* is daily used as a course support in AI and RL.
- It has already been used successfully to manage power flows in simulated microgrids using multi-agent reinforcement learning [Lauri, 2013b].
- *Ipseity* can be freely downloaded from:

 http://www.ipseity-project.com

 under a GNU GPLv3 open-source licence.
- It is still an experimental platform: it currently provides mostly online model-free RL algorithms.
- Though *Ipseity* is highly modular and broadly extensible.
Possible enhancements of *Ipseity* include:

1. Allowing the user to easier combine the modules of a cognitive system
2. Scripting the experiments
3. Implementing efficient Policy Search algorithms for solving continuous sequential decision problems
4. Providing tools for facilitating the comparison between different decision-making techniques
5. Establishing a database for storing and ease the sharing of experiment data
6. Providing a web-interface for accessing the results of experiments under progress
References